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Push-out strength of modified Portland cements and resins 
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ABSTRACT: Purpose: Modified calcium-silicate cements derived from white Portland cement (PC) were formulated to test 
their push-out strength from radicular dentin after immersion for 1 month. Methods: Slabs obtained from 42 single-rooted 
extracted teeth were prepared with 0.6 mm diameter holes, then enlarged with rotary instruments. After immersion in 
EDTA and NaOCl, the holes were filled with modified PCs or ProRoot MTA, Vitrebond and Clearfil SE. Different 
concentrations of phyllosilicate (montmorillonite-MMT) were added to experimental cements. ProRoot MTA was also 
included as reference material. Vitrebond and Clearfil SE were included as controls. Each group was tested after 1 month 
of immersion in water or PBS. A thin-slice push-out test on a universal testing machine served to test the push-out strength 
of materials. Results were statistically analyzed using the least squares means (LSM) method. Results: The modified PCs 
had push-out strengths of 3-9.5 MPa after 1 month of immersion in water, while ProRoot MTA had 4.8 MPa. The push-out 
strength of PC fell after incubation in PBS for 1 month, while the push-out strength of ProRoot MTA increased. There 
were no significant changes in Clearfil SE Bond or Vitrebond after water or PBS storage. (Am J Dent 2010;23:43-46). 
 
CLINICAL SIGNIFICANCE: Incorporation of phyllosilicate in the experimental Portland cements did not improve the push-
out strength compared to the commercially available ProRoot MTA. PBS immersion decreased the push-out strength of 
modified Portland cements while ProRoot MTA exhibited higher push-out strength after immersion in PBS. 
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Introduction       

 Modified Portland cements (PCs) like mineral trioxide 
aggregate (MTA) have multiple uses in dentistry.1-4 These 
materials contain tricalcium and dicalcium silicate, and con-
sist of a powder of fine hydrophilic particles that sets in water. 
Several studies are available on the chemical and physical 
properties of these materials.5-7 Many authors agree that a 
significant feature of these materials is their ability to create 
an adequate seal.8-10 Evidence of the interaction of Portland 
cements with phosphate buffered saline (PBS) resulting in the 
formation of hydroxyapatite (HA) crystals11,12 indicates that 
these cements can create HA in physiological tissue fluids.13   
 Although PC-based cements fulfill most of the requirements 
for an endodontic filling material, their working properties are 
less than ideal. When these cements are mixed with water, the 
resulting cement pastes are difficult to handle and the setting 
times are long. Calcium chloride has often been incorporated in 
PC-based cements as an accelerator to shorten the setting time 
with a minimal impact on their physical properties or lea-
kage.14-16 Calcium chloride and phyllosilicatea (montmorillo-
nite)-containing materials based on Portland cement were re-
cently developed for endodontics to improve handling and 
physical characteristics and extend the clinical applications. 
The new materials showed improved in vitro properties such as 
marginal adaptation and sealing ability9,17 and biocompatibil-
ity.18,19 These studies used phyllosilicate clay as a plasticizing 
agent to improve the handling characteristics and dimension 
stability of the PC-based cements.     
 The ability of endodontic materials to resist deformation 
of established seals via micromechanical retention or friction 
is essential to the survival of the material-dentin interface 
during intraoral tooth flexure.20    
 This study assessed the push-out strength of modified 

PCs. A dentin adhesive and a resin-modified glass-ionomer 
cement were used as control materials. All the materials were 
evaluated after 1 month of incubation in water or PBS. The 
null hypothesis was that the push-out strength does not differ 
in the modified PCs and ProRoot MTA.    

Materials and Methods   
Sample preparation - Forty-two single-rooted teeth extracted 
for orthodontic/periodontal reasons were collected under a 
protocol reviewed and approved by the Human Assurance 
Committee of the Medical College of Georgia. For each tooth, 
a 0.90 ± 0.10 mm thick longitudinal slab was prepared by 
making buccolingual cuts perpendicular to the longitudinal 
axis of the tooth using a slow-speed diamond sawb under 
water-cooling. A 0.6 mm drill bit was used to prepare pilot 
holes in the radicular dentin. Each pilot hole was carefully 
drilled so that it was equidistant from the cementum and the 
canal wall. Six pilot holes were prepared for each tooth. Each 
hole was then enlarged using a size 40, 25 mm long 0.04 taper 
Profile nickel titanium rotary instrument.c A miniature drill 
press was configured so that the Profile files penetrated to the 
D16 diameter of the rotary instrument along the surface of the 
tooth slab. This permitted preparation of 252 truncated holes 
that simulated standardized circular defects. The tooth slabs 
were immersed in 17% EDTA and ultrasonicated for 5 
minutes to remove the smear layer created during the hole-
shaping procedures. The slabs were then immersed in 6.15% 
sodium hypochlorite (NaOCl) and ultrasonicated for 5 
minutes to dissolve organic debris. 
 The 42 root slabs containing 252 holes were divided into 
seven groups, each containing 36 holes: Group I was filled 
with white PC (CEM Id) mixed with anhydrous calcium 
sulphate and calcium chloride (PC1); Groups II, III and IV 
(PC2, PC3, PC4, Table 1)  were filled with the  same modified 
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Table 1. Composition of tested materials.. 
____________________________________________________________________________________________________ 

Code  Composition 
____________________________________________________________________________________________________ 

PC1  White Portland cement (thermally and mechanically treated), 
calcium sulphate, calcium chloride 

PC2 Same as PC1 but with addition of 1% phyllosilicate 
PC3 Same as PC1 but with addition of 2% phyllosilicate 
PC4 Same as PC1 but with addition of 5% phyllosilicate 
ProRoot  Same as PC1 but with addition of bismuth oxide for radiopacity 
   MTA sterilization and sieving to narrow particle size.  
Vitrebond Polyacrylic acid with pendent vinyl goups and diphenyliodonium 

chloride to make it light curable, plaus acid-susceptable glass 
fillers. 

Clearfil SE Primer: hydroxyethyl methacrylate (HEMA), water, ethanol, 10-
methacryloyloxydecamethylene phosphotic acid (MDP);  

  Adhesive: HEMA, MDP, dimethacrylates. 
____________________________________________________________________________________________________ 

 
Portland cement but mixed with 1, 2 and 5 wt% of 
phyllosilicate.a The experimental modified PCs are patented 
formulations (University Patent EP 07425074.7 and USA 
US60/900.467; extension PCT/EP2008/051583) designed and 
prepared at the Centre of Biomineralogy, Crystallography and 
Biomaterials.e Group V holes were filled with ProRoot MTA,c 
Group VI holes were filled with Vitrebondf and Group VII 
holes were filled with Clearfil SE Bond.g The PCs and 
ProRoot MTA were mixed with a powder/liquid ratio of 3/1. 
Vitrebond and Clearfil SE Bond were used according to the 
manufacturer’s recommendations, and cured with a LED 
light-curing unit (Elipar FreeLight 2f) with an output intensity 
of 600 mW/cm2. All cavities from one tooth slab were filled 
with one type of cement or adhesive. Each tooth slab was 
placed over a Mylar strip,h which in turn was placed over a 
microscope glass slide. The cement material was forced into the 
cavities with a small spatula so that each hole was filled to 
excess with the material. The surface of the tooth slab was then 
covered with another Mylar strip and a glass slide. The 
assembly was secured with binder clips so that excess material 
was expressed laterally from the surface and bottom Mylar 
strips. The assemblies were transferred to a humidity chamber 
to be stored under 100% relative humidity for 48 hours. The 
surfaces of each tooth slab were polished with 800-grit silicon 
paper under water to remove excess material.    
Push-out strength - The push-out strength of the material was 
investigated after 1 month of incubation in water or in 
phosphate buffered saline (PBS). To prevent microbial growth, 
0.02% sodium azide was included in the solutions.   
 The push-out strength of the set root canal sealers was 
evaluated using a thin-slice push-out test design according to 
the method of Chandra & Ghonem.21 Prior to testing, the 
thickness of each tooth slab was measured using a pair of 
calipers. A 0.7 mm diameter carbon steel cylindrical plunger 
was used for the push-out test. The plunger was attached to a 
100 N load cell connected to a universal testing machine 
(Vitrodyne, Model V1000 Universal Testeri). All specimens 
were loaded at a cross-head speed of 0.6 mm/minute.   
 The push-out device consisted of a clear Plexiglas platform 
with a vertical cylindrical channel, which served as the support 
for the tooth slab and provided space for the vertical movement 
of the plunger through the truncated hole (Fig. 1). To ensure 
optimal alignment of the plunger with the sealer-filled hole, a 
horizontal channel was drilled through the Plexiglas platform 
into the vertical channel  (Fig. 1). A  fiber  optic  light guide was 
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Fig. 1. Diagram of the clear plastic push-out platform mounted below the 0.7 
mm diameter steel plunger that in turn was mounted on a 100 N load cell. Note 
the hole in the platform is directly beneath the plunger. A fiber-optic light guide 
inserted into a horizontal channel in the plastic plate provides high intensity 
illumination of the restored truncated hole during alignment procedures.   
 
inserted into the horizontal channel to provide high intensity 
illumination of the restored truncated hole during the alignment 
procedure.     
Statistical analysis of strength tests - Push-out strength of the 
materials was computed by dividing the maximum load (N) 
derived from the load displacement curve by the material-
dentin interfacial area (mm2) and expressed in megaPascals 
(MPa). Initial attempts to analyze the data with a two-way 
ANOVA (material vs. storage media) revealed that the data 
were not distributed normally, had unequal variances and had 
significant interactions. Therefore, the data were analyzed using 
the least square means (LSM) method. Least square means are 
the expected value of group means that one expects for a 
balanced design involving the group variable, with all 
covariates held at their mean value. The variance in the LSM 
value are given in standard error of the mean (SEM) instead of 
standard deviation (SD). Multiple comparisons of the LSM 
were performed by the Holm-Sidak method. Statistical 
significance was set in advance at = 0.05. The power of the 
LSM test was 1.0 for material, 0.9 for storage media and 0.85 
for material vs. storage media.  

Results   
 The push-out strength results are shown in Fig. 2. The 
mean 1-month push-out strength of PC1 was 10 MPa 
regardless of the storage solution (water or PBS). By contrast, 
PC2 had a very low push-out strength after 1 month of 
storage. When PC3 specimens were tested, although their 
mean values were lower than those of PC1 due to their 
relatively high variance, they were not significantly different 
from PC1, and they did not change in water or PBS. Portland 
cement 4 (PC4) 1-month push-out strengths in water or PBS 
did not significantly differ from those of PC1-2.  ProRoot MTA 
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Table 2. Push-out strength of test materials in PBS or water. 
____________________________________________________________________________________________________ 

Material Time Storage Push-out strength (MPa)* 
____________________________________________________________________________________________________ 

PC1 + 0% ps 1 month PBS 12.3 ± 1.5 c 
PC2 + 1% ps 1 month PBS 1.3 ± 1.2 a 
PC3 + 2% ps 1 month PBS 7.0 ± 1.3 b 
PC4 + 5% ps 1 month PBS 8.4 ± 1.4 b 
Pro Root MTA 1 month PBS 11.6 ± 1.6 c 
Vitrebond 1 month PBS 24.2 ± 1.2 d 
Clearfil SE Bond 1 month PBS 21.2 ± 1.6 d 
PC1 + 0% ps 1 month Water 9.5 ± 1.4 c 
PC2 + 1% ps 1 month Water 3.1 ± 1.5 a 
PC3 + 2% ps 1 month Water 6.5 ± 1.2 b 
PC4 + 5% ps 1 month Water 5.1 ± 1.2 b 
Pro Root MTA 1 month Water 4.8 ± 1.4 b 
Vitrebond 1 month Water 19.7 ± 1.2 d 
Clearfil SE Bond 1 month Water 25.4 ± 1.1 d 
____________________________________________________________________________________________________ 

*Values are least squares ± standard error of the mean. PC = Portland cement, 
ps = phyllosilicate. 
Values identified by different letters are significantly different (P< 0.05). 
 
push-out strength was twice as high (P< 0.05) in PBS as in 
water (Table 2). 
 The two resin-based restoratives, Vitrebond and Clearfil SE 
Bond had significantly (P< 0.05) higher push-out strengths than 
those of the modified PCs, and their bond strengths were 
unaffected by time or storage solution (Fig. 2). 

Discussion 

 The present study assessed the 1-month push-out strength of 
phyllosilicate-modified Portland-based cements formulated to 
improve their handling characteristics. Montmorillonite is a 
phyllosilicate mineral (deriving from deposits of weathered 
volcanic ash) formed by stacked silicate sheets (two silica-
oxygen tetrahedral sheets sandwiching an aluminium or mag-
nesium octahedral sheet) interposed by water and exchangeable 
interlayer cations (charge-balancing counterions). Montmoril-
lonite is characterized by high cation exchange ability, swelling 
capacity and strong adsorption. Because of its hydrophilic 
nature the montmorillonite swells with the addition of water 
and may expand considerably due to water penetrating the 
interlayer molecular spaces and concomitant adsorption. Swel-
ling produces an increase in the 001 interlayer d-spacing.22 
Crystalline swelling of 2:1 layer phyllosilicates is a thermo-
dynamically irreversible process23,24 and dehydration (removal 
of interlayer water) is an endothermic reaction starting below 
150°C.22 Previous studies included montmorillonite in the 
composition of glass-ionomer and bone substitute cements.25,26 
 Shrinkage is a detrimental problem affecting many cements 
and is responsible for gap formation and marginal sealing 
reduction. The irreversible swelling of montmorillonite may 
counteract the shrinkage and enhance dimensional stability over 
time. With the exception of PC2 in water and PBS, push-out 
strength did not differ among the modified PCs and ProRoot 
MTA. Thus, the null hypothesis is accepted, except for PC2. 
 The use of 1 mm thick root slabs perforated by standardized 
truncated cone holes made all holes for rinsing identical, 
rinsing with EDTA/NaOCl lasted exactly the same time, and 
all specimens were tested with the same-sized plunger. We 
previously found that there were no regional differences in the 
dislocation resistance of modified PCs among the coronal, 
middle and apical thirds of the radicular dentin, so that data 
from all regions, including the  sclerotic dentin along the  apical 
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Fig. 2. Push-out strength (MPa) of modified Portland cements PC1-PC4, 
ProRoot MTA, Vitrebond and Clearfil SE Bond. The height of each bar 
represents the mean value of 10 specimens. Half brackets indicate plus one 
standard deviation. Different lower case letters indicate significant 
differences (P< 0.05) between groups tested after 1 month of immersion in 
water or phosphate buffered saline (PBS). 
 
thirds of the root canal, could be pooled.27 
 Several studies have used thin slice push-out tests to 
evaluate the dislocation resistance of root filling materials.28-35 
Our study adopted a modified push-out protocol specifically 
designed to examine the retentive potential of pure sealer 
materials in radicular dentin.27 Gancedo-Caravia & Garcia-
Barbero36 demonstrated that humidity increased the push-out 
strength of ProRoot MTA. Huffman et al27 compared the 
push-out strength of an experimental calcium silicate-based 
root canal sealer, AH Plus Jet and Pulp Canal Sealer. They 
demonstrated a higher push-out strength of the calcium 
silicate-based cements, particularly after storage in PBS 
wherein carbonated apatites may be formed along the 
material-radicular dentin interface,37 improving the frictional 
resistance38 of the cement to dislocation.  
 Modified PCs resist displacement from dentin due to the 
intrinsic roughness of EDTA/NaOCl treated radicular dentin, 
the intrinsic roughness of the cements, and their intrinsic 
cohesive strength. There is some micromechanical retention 
due to interfacial friction and the cohesive shear strength of 
cement particles extending into microscopic undercuts in the 
dentin. As displacement force is applied to these cements 
vertically, it creates shear stress on the cement particles within 
dentin undercuts. When these shear stresses exceed the 
cohesive strength of the material, the bulk cement is vertically 
displaced slightly but may stop as another cement particle 
encounters another dentin undercut.  
 The effect of immersing calcium-silicate cements in PBS 
on a push-out test was first tested by Huffman et al27 and then 
in the present study. Neither the resin-based material nor 
those of the PC-based materials Clearfil SE Bond and 
Vitrebond push-out strengths were significantly different 
when stored in water vs. PBS, except for Pro-Root MTA. Pro-
Root MTA stored in water gave lower push-out strengths (P< 
0.05) than those stored in PBS (Table 2, Fig. 2). The 
biocoating of apatite formed on the surface of Pro-Root MTA 
after immersion in PBS12,27 may modify the retention and 
friction of cements on dentin walls. ProRoot MTA showed 
results not statistically different  from  white  Portland  cement 
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the active ingredient in white ProRoot MTA.39 The incorpora-
tion of phyllosilicate (MMT) in white Portland cements (PCs) 
did not improve the push-out strength of these materials 
compared to commercially available ProRoot MTA. The 
push-out strength of ProRoot MTA was significantly higher 
(P< 0.05) after immersion in phosphate buffered solution, 
suggesting that simulated body fluids play an important role 
in increasing its mechanical properties. Further investigations 
are necessary to evaluate the chemical and mechanical 
transformation of white MTAs induced by PBS.  
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